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Abstract Previous methods establishing 3D inter-frame correspon-
dences for non-rigid motion largely fall into two categarie

We present a novel fully automatic method for high res- One depends on markers attached to the object [15, 19, 2]
olution, non-rigid dense 3D point tracking. High qual- or on feature correspondences manually selected by the
ity dense point clouds of non-rigid geometry moving at users [21]; the other calculates correspondences based on
video speeds are acquired using a phase-shifting structurethe geometry using a 3D deformable/morphable model
light ranging technique. To use such data for the temporal[23, 29, 13, 36, 7, 5, 35, 9], or other 3D shape registration
study of subtle motions such as those seen in facial expresalgorithms such as [3, 39]. In general, most of the exist-
sions, an efficient non-rigid 3D motion tracking algorithm ing methods rely on templates with relatively few degrees
is needed to establish inter-frame correspondences. Thef freedom. While the recovered low dimensional configu-
novelty of this paper is the development of an algorithmic rations can often be used effectively in classificationythe
framework for 3D tracking that unifies tracking of intensity are hardly sufficient in many analysis applications, espe-
and geometric features, using harmonic maps with addedcially dynamic facial expression analysis, since many dis-
feature correspondence constraints. While the previces us tinct characteristics of a person’s expression lie in thxlsu
of harmonic maps provided only global alignment, the pro- details such as the wrinkles and the furrows that are gener-
posed introduction of interior feature constraints guteas ated by highly local skin deformations. The major contri-
that non-rigid deformations will be accurately tracked as bution of this paper is the use of the elements of conformal
well. The harmonic map between two topological disks geometry theory for the 3D tracking problem, which to the
is a diffeomorphism with minimal stretching energy and best of our knowledge, has not been attempted before. Al-
bounded angle distortion. The map is stable, insensitive tothough our method was implemented in the context of fa-
resolution changes and is robust to noise. Due to the strongeial expression tracking, it is general and could be applied
implicit and explicit smoothness constraints imposed ley th to other classes of similarly deforming objects.

_algor_ithm and the_ hig_h-re_s.olution data, the resulting '€3-  Recent technological advances in digital imaging, digital
. ) X PC : X time 3D shape acquisition increasingly more feasible. Such
is validated through a series of experiments demonstratlngr(,j“.u‘:ling techniques include structured light [26, 25], and

its accuracy and efficiency. space-time stereo [38, 8]. These systems can capture dense
3D data at a high frame rate. Recently, a high-resolution 3D
1. Introduction and Previous Work expression data acquisition system was developed in [26]

which captures highly accurate geometry at speeds that ex-
Automatic tracking of non-rigid 3D motion is essential ceed regular video frame rate. Such high-quality data is

in many computer vision and graphics applications, espe-very attractive for the analysis of facial expressions. How
cially dynamic facial expression analysis, such as facial e ever, since the dense data samples in these 3D face scans are
pression recognition, classification, detection of emmlo  not registered in object space, inter-frame corresporatenc
states, etc. In the literature, most non-rigid object track can not be established, which makes the tracking of facial
ing and registration algorithms utilize image data from 2D features, temporal study of facial expression dynamics and
video sequences, e.g. [34, 4, 20, 1, 6, 31, 12, 13, 33, 30, 24]other analysis difficult. For this purpose, a number of track
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Figure 1. Snapshots from a tracking Sequence: a) Initial data franeitil tracked frame c¢) Data at the expression peak d)
Tracked data at the peak e) Close-up at the peak

ing algorithms have been proposed recently for 3D facial lect a set ofmotion-representativéeature corners (for ex-
expression data [38, 32]. Tracking methods based on op-ample, for facial expression tracking, we select corners of
tical flow estimation[38, 13] can be sensitive to noise for eyes, lips, eye brows etc.) and establish inter-frame eorre
textureless regions. A hierarchical tracking framewonk fo spondences using commonly used techniques (for example,
high resolution 3D dynamic expression data was presentechierarchical matching used in [34]). We can then integrate
in [32], using a deformable generic face model. However, it these correspondence constraints with the boundary condi-
suffers from problems likéoldingandclustering which are tion to calculate harmonic maps, which not only account for
inherent to the methods employing local optimization tech- global rigid motion, but also subtle non-rigid deformation
nigues such as FFD. Also, the face model needs to be manand hence achieve high accuracy registration and tracking.

ually divided into several deformable regions, with associ  The theory of harmonic maps is based on conformal ge-
ated shape and motion control parameters. This initial S€J-ometry theory [14, 28]; the harmonic map between two
mentation, along with the associated parameters has to bgypological disks is a diffeomorphism with minimal stretch

recovered statistically, requiring many experiments éute ing energy and bounded angle distortion. Harmonic maps
different expression of every subject. Although this might 5re jnvariant for the same source surface with different
be acceptable for certain applications like motion capture poses, thus making it possible to account for global rigid
for computer graphics, it requires prohibitive amounts of mtion. Harmonic maps are highly continuous, stable and
time and effort for processing of the large number of data- opust to noise. They depend on the geometry in a con-
s_ets require_d for data dri\(en applications in facial expres tinuous manner. A very important property, which governs
sion analysis and synthesis[5]. our registration and tracking algorithm is that the harraoni

In this paper, we present a novel fully automatic method Map is one-to-one. To register two frames, we align their re-
for high resolution, non-rigid dense 3D pointtracking. Hig ~ SPective harmonic maps as closely as possible by imposing
quality dense point clouds of facial geometry moving at t_he suitable boundary and feature constraifitse motiva-

video speeds are acquired using a phase-shifting basedf©n t0 do so is to establish a common parametric domain
structured light ranging technique [26]. To use such data for the two surfacgswhich, coupled with the above men-
for temporal study of the subtle dynamics in expressions, antioned property, allows to recover 3D registration between

efficient non-rigid 3D motion tracking algorithm is needed the two frames. In our case, the harmonic maps are dif-
to establish inter-frame correspondences. In this paper, w f€omorphisms, that is one to one and on-to, and hence lend
propose such an algorithmic framework that uses a math_?hemseilves asa ngtural choice for surface parameterzatio
ematical tool called harmonic maps [27, 22, 10, 11]. Har- In tracking applications.

monic maps were used in [37] to do surface matching, al- As part of our framework, a deforming generic face
beit focusing on rigid transformations. Given the source model is employed to track the dense 3D data sequence
manifold M and the target manifold, only the bound-  moving at video speeds, with the harmonic maps guiding
ary conditionu|gys : OM — 0D was used to constrain the deformation field. The harmonic maps are constrained,
and uniquely determine the harmonic map M — D. and hence driven by the feature correspondences estab-
For applications like high resolution facial tracking thybu) lished between adjacent frames usingitenative scheme

we need to account for non-rigid deformations, with a high the feature correspondences are made on texture and curva-
level of accuracy. To this end, we introduce additional fea- ture images using standard techniques, such as corner de-
ture correspondence constraints, in addition to the baynda tection and optical flow. Most surface regions have strong
constraintin our implementation of harmonic maps. We se- features either in intensity or shape images. Our framework



uses both simultaneously providing denser feature trackin  where{vg, v1,v2} and{vg, v1, v3} are two conjuncted tri-
Harmonic maps, thus, help us to simplify a 3D surface reg- angular faces.

istration problem to a 2D image matching problem. There- By minimizing the harmonic energy, a harmonic map
sulting harmonic map provides dense registration betweencan be computed using the Euler-Lagrange differential
the face model and the target frame, thereby computing theequation for the energy functional, i.AE = 0, whereA
motion vectors for the vertices of the generic face model. is the Laplace-Beltrami operator [27, 22, 10, 11]. This will
Our system can not only track global facial motion that is lead to solving a sparse linear least-square system for the
caused by muscle action, but also subtler expression sletail mappingH of each vertew; [10, 37, 14]. If the boundary
that are generated by highly local skin deformations. We condition is given,

have achieved high accuracy tracking results on facial ex-

pression sequences, which are comparable to those reported Hlonm : OM — 9D, (2)

in [32, 17], using the same dense 3D data, while minimiz-
ing the amount of human labor required for preprocessing ) .
and initialization. The above mentioned level of accuracy, For tr_acklng purposes though, we ”ee‘?' o qllgn th_e two
coupled with theautomatic natureof our method, demon- harmonic maps closely together (as explained in Section 1),

strates the merits of our framework for the purpose of high and hence track interior non-rigid deformations as well. Fo
resolution tracking of non-rigid 3D motion this purpose, we also incorporate additional hard congiai

The remainder of the paper is organized as follows: In to establi_sh interior _feature correspondences f_;md to han-
Section 2, we give an overview of harmonic mapping. Sec- dle non-disk topologies (e.g., a _3D face scan with an open
tion 3 explains our tracking method in detail. We first de- mo_uth).. Suppose we have a point on an mne_r-boundary or
scribe the global alignment of 3D scans, followed by a de- aninterior feature point; on th? 3D rqeslM, which should
scription of the registration algorithm based on harmonic be mapped to a corresponding point on the target 2D

mapping and an iterative refinement scheme using local feaplaneD. We can add it as a hard constrafi{v;) = w;

tures. Experimental results are presented in Section 4, an(io the syste_m from E_quat|0n 1 and_2. However, the result-_
we conclude with a discussion and future work in Section 5. "9 harmonic energy is expected to increase due to the addi-
tional hard constraints introduced. In order to reduce the e

2. Harmonic Mapping ergy to achieve a smoother mapping, we use the Neumann
boundary condition, a soft constraint. This condition just

reduce the non-rigid 3D tracking problem to a 2D image constrains the boundary points &f to lie on the boundary

. ) . ) . f the 2D disk D, th t iti bei db
registration problem, which has been extensively studled.0 €2 dist © exact posttions being governed by
."the minimization of harmonic energy criteria. It is diffate

;’gﬁjsrfhgei::ge":;h.fi rseur:azcs ztrblgt S;zceht.tiycszn;?':from the fixed boundary condition used for surface match-
» INEy hav ' ucture whi X ing [37], in which each boundary point on tB® meshM

ploited to make the problem more tractable using harmomcis mapped to a fixed point on thed disk, making it a hard

maps. . L

A harmonic map : M — D can be viewed as an em- gonstramt. 'I[E o?r method, allr;thehmtenl())rfea:fculgelz cor;:&;a;? e
bedding from a manifold/ with disk topology to a planar ences on e 1ace scans which can be refiably estabisne
graphD. A harmonic map is a critical point for the har- are given thg maximum weight, and hence are chosen as
monic eﬁergy functional hard constraints In the absence of any strgng featureg on

' the boundary, the boundary condition is given a relatively
lower weight, and hence tts®ft boundary constrairis em-
ployed to minimize the harmonic energy.

Intuitively, consider the manifold// to be made of a
sheet of rubber [10]. The harmonic map with just the
boundary constraint can be thought of as stretching the
boundary of M over the boundary of the targetD disk
D. In this case, each point on the boundaryldfis as-
signed a fixed location on the boundaryidf where it will
E(H) = Z Kfwo 00| H (v0) — H(v1)]?, (1) be nailed down The interior of the sheet then rearranges

[vo,01] to minimize the stretching(or folding), thus minimizingeth
energy. Now, adding extra feature constraints is analogous
to clamping down the rubber sheet at certain interior points
The harmonic map with added feature constraints acts like
1, (vo—wv2)- (v1 —va) (vo — w3) - (v1 — v3) a clamped rubber sheet, rearranging around the nailed down
2 (vo — v2) X (v1 —v2)| | [(vo — v3) X (v1 — v3)|”’ interior points to achieve the most stable configuratiore Th

then the solution exists and is unique.

An important contribution of our tracking method is to

BE(H) = /M |dH|*duM,

and can be calculated by minimizidg(H). The norm of

the differential|dH | is given by the metric o/ and D,
andduM is the measure on/ [27, 22, 10, 11]. Since our
source manifoldV/ is in the form of adiscretetriangular
mesh, we approximate the harmonic energy as [10, 37, 14],

where[vg, v1] is an edge connecting two neighboring ver-
ticesvg andvy, andky,, ., is defined as




points on the boundary of the rubber shaétstill remain 3D measurements per frame, at a 40Hz frame rate. The
on the boundary oD, though they are free tslide along RMS (Root-Means-Squared) error of the 3D range data is
it (Neumann boundary condition, a soft constraint) to help about 0.05mm. Small holes around brows, eyes, nose, etc.
achieve the most stable configuration. are filled by a simple interpolation technique.

In our work, we compute harmonic maps between a sur-  However, since the dense data samples in these 3D face
face undergoing non-rigid deformations (e.g. a human face)scans are not registered in object space, inter-frame-corre
and a canonical unit disk on the plane. Harmonic maps havespondences can not be established. Furthermore, the dense
many merits which are valuable for tracking purposes: point clouds differ across the scans both in terms of the

number of data samples as well as the relative positions

o First, the harmonic map is computed through global opti- of the samples on the surfaces. To solve these problems,

mization, and takes into account the overall surface tapolo 5 generic face model (a coarser face mesh) is fitted to the
;Zuzvﬁigﬁisrens;;ﬂg; g?:;gﬂ?&:’gng lg:!gl'no% t%?:;?i;n first 3D scan frame in the initialization step, by a variatibn
' " Free-Form Deformation (FFD) shape registration method

e Secondthe harmonic map is not sensitive to the resolution [32, 16]. The FFD technique is employed only for fitting

of the face surface, and to the noise on the surfageen of the first frame, and not for subsequent tracking.
if the data for the input surface is noisy, the result won't be
affected significantly. 3.2. Global Alignment and Boundary Identification

e Third, the harmonic map doesn't require the surface to be
smooth It can be accurately computed even when the surface
includes sharp features.

In the captured sequences, in addition to the non-rigid
facial expression motion, there is also a certain amount of
rigid head motion involved. To account for the latter, we

e Forth, in our case, since the range of the map is a unit disk align the3 D face scans globally. To start with, we manually

which is convex, the harmonic map exists, and @iféeo- mark and identify the boundary of the first frame. We can

morphism namely, the map is one to one and on-to. So it then apply the Iterative Closest Point(ICP) algorithm: for

can allow us to establish correspondences on 2D and recoveieach sample on thientified boundary of the first frame

3D registration from the same. we find the closest sample on subsequent frames and apply
e Fifth, the harmonic map is determined by the metric, not the a rigid body transf(_)rmatipn that minimizes the distance be-

embedding. This implies that thermonic map is invariant tween Cor.re_slpondlng points [3]_' ane we have; the bound-

for the same face surface with different poses. Furthermore ary of the initial frame and the rigid transformation, we can

if there is not too much stretching between two faces with dif align the face scans globally and identify the boundaries of

ferent expressions, they will induce similar harmonic maps the subsequent frames.

Because our dynamic range sequences are acquired at a high

frame rate (40 Hz), we can assume that the local deformation 3.3. Initial Coarse Registration

between two adjacent frames is small.

Once we have the global alignment, we want to capture

Furthermore, harmonic maps are easy to compute ancthe non-rigid deformation between two adjacent frathgs
robust to numerical errors. By using a traditional finite-ele  and ;. This inter-frame registration problem, resulting
ment method [18], they are easy to implement. in a dense ma@® : M; — M,,, is solved by finding a

- - . coarse set of interior feature correspondences.
3. The Non-Rigid Tracking Algorithm The relative ease of finding feature correspondences on
In this section, we present our novel fully automatic 2D images as compared to 3D scans is the motivation for

method for high resolution, non-rigid dense 3D point track- the next step of mapping/; and M., to 2D disksD;

ing using harmonic maps. We first describe the global align- 2nd Di+1 respectively, using the boundary constraint as
ment of 3D scans, followed by a description of the registra- d€scribed in Section 2. According to [37], the harmonic
tion algorithm based on harmonic mapping and an iterative MaPPiNg is robust to boundary variation and occlusion.

refinement scheme using local features. We define these mappings &5: M; — D; and Hiy:
M;y1 — D;y;. Following the disk mapping, we select
3.1. Data Preparation and Initialization a sparse set of easily detectable motion representative fea

ture corners on the disks (for example, for facial expressio
The dynamic range sequences used in this paper ardracking, we select corners of eyes, corners of lips, tip of
collected by a phase-shifting based structured light rang-the nose etc.) using texture and shape information. For the
ing system [26]. When scanning faces, the real-time 3D latter, we also adopted the idea of harmonic shape images
shape acquisition system returns high quality dense pointas in [37], associating the curvature information of versic
clouds of facial geometry with an average of 75 thousandin M; to the corresponding ones ;. In practice, these
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Figure 2. (a) The acquired 3D face scan data. (b) The . . . . ‘ .
resulting harmonic map onto 2D disk with associated . . .
texture information. (c) The resulting harmonic map with
associated curvature information, where brighter intgnsi
signifies higher curvature. () (d) (e)

feature corners usually have peak curvature value and can Figure 3. (a) S,: Initial configuration of surface (b¥,:
be easily detected by a pre-defined threshold. Fig. 2 shows  gyrface after non-rigid deformation (c, d@)., D:: Har-
an example of harmonic maps generated from one frame. monic Map ofS,, and.S; respectively, with the hard bound-

Once we have the set of correspondences o2hdisks ary constraints only (ep,: Harmonic map ofS, with the
D; and D, 1, we can establish the correspondences on the ‘'tip of the nose’ as an additional feature-correspondence
3D face scanM; and the diskD;,, since the harmonic constraint. We can see that imposing correspondence con-

map H; is one-to-one. Following this, as explained in Sec-  straints aligngD; andD; better (as explained in Section 2),
tion 2, we augment the boundary constraint used to calcu- "esulting in accurate registration.
late H; with these additional feature-correspondence con- adopt an iterative refinement scheme to improve the accu-
straints EO define a new harmonic map : M; — D;. racy of the registration by progressively incorporating co

As H; is driven by motion representative feature corre- rognondence constraints of more local features. As part of
spondence§ petween thg two frames, it captures the intergig scheme, we keep on augmenting the set of sparse cor-
frame non-rigid deformation at a coarse level. We can then egnondences established in the previous step till it iselen
overlay D} onto D, to recover the inter-frame registra- enough to capture the facial deformation.
tion on 2D. Once again, we use the fact that the harmonic In particular, we define the difference image; for D/
maps are one-to-one to calculate the dense Magquired andD; asD}-(u 2) = [D!u.0) — Dy (o v)z|2 USZ'

. . . (2 7 I - 7 I 7 ) .

for r_egls_tratlon 03D ”.a'.””es' H_armomc maps, thug, help ing D} and D, as calculated in the previous step, we find
us simplify a 3D non-rigid tracking problem to a 2D image their difference image f; and identify the regions corre-

registration problt_am_. _— L sponding to significant differences. These regions indicat
The algorithm is |II_ustrated in Fig. 3 by con5|d_er|ng the the areas on the face undergoing deformation, the motion
examp_le of a synthetic surfgc%underg(_)mg non_—rlgld _de- of which has not been captured by the existing correspon-
formatlc_)n.So ands; are the initial and final conflgl_Jratlons dence constraints. Because our dynamic range sequence is
respgctlvely, gndDo and D, are the corresp onding har- acquired at a high frame rate (40Hz), we can assume that
monic maps with only the boundary constraint. We can no- the local deformation is relatively small, which allows us
tice that althougrD_o an(_jD ¢ confp fm to each qthe_r ar(_)und to apply standard 2D image registration methods within the
the boundary, the interior non-rigid deformation is stil-u difference regions. For high accuracy, we only consider ar-

/ i i - . . .
accounted for. N(.)V\DO’ anew haTmO”'C map f(ﬁ". is cal eas with local features, which can be detected easily by ap-
culated by mapping certain motion representative features

. . o . lying a Laplacian filter to the imagP; andD, ;.
on S, to their corresponding positions dpy, as described Pying e . 9B . s
. T . . A new D! is calculated by augmenting the set of corre-
earlier. This is done in order to align the two map$and i : .
. . spondences with the new ones, which are kept if the new
Dy as closely as possible, so that using the one-to-one prop-

) ) _ -
erty of harmonic maps, a dense registration betweeand Sgedree dngtehg:\r/\(/)irsge\tl\\llveeigé agg fé;raltigecurr??ilstise' (;Jli?fgrgl:ce
S; can be recovered. As we can obseri®, and D; are ’ P 9

similar to each other even in the interior, thus providing ac error drops be!ow the prescrlb_ed threshejd_ When we
: ) stop, as described in the previous subsection, we overlay
curate registration.

D} on D;;; to establish a dense set of correspondences,
3.4. lterative Refinement and hence recover inter-frame registration. This process i
illustrated in Fig. 4.
The registration achieved from the previous step, al- We tackle the problem offrifting, a common issue in
though capable of capturing the coarse level facial defor- most tracking methods, in the following manner. During
mation, is still insufficient to track subtle expressionse W the initial fitting step, we identify some of the feature nede



on the mesh, like corners of the mouth etc. We then find racy of a tracking method is the displacement error of the
the data points inV/; closest to these feature nodes, and mesh nodes from the ground truth. As part of our second
constrain them to correspond to the respective features inexperiment to calculate the error measure in terms of abso-
the next data frame, i.el;, ;. Consequently, the distinct lute displacements, we chose a ggtof points spread uni-
features on the face are always tracked correctly, therebyformly over the data surface as test points, such that their
reducing the drift for other parts of the face. motions form a representative subset of the motion vectors
Once we have the dense registration, we calculate thefor all the vertices, i.e. the set of all the motion vectors is
motion vectors for the vertices of the generic face mesh. sampled sufficiently. To establish the ground truth, we at-

For instance, to deform the generic face mesh fiainto tach markers on the face of the subject at locations given by
M;+1, we localize each mesh vertex; inside a data tri-  the setD.. The markers are for verification purpose only

angle of M;, followed by finding the corresponding data and are not used for tracking. In order to be detected, the
triangle of M;,, and localizingm,; in M;;, using bilin- diameter of each marker is about 3mm. For error analysis,

ear interpolation. We continue this process for every frame we need to compare the ground truth against our tracking re-
thereby calculating the motion vectors for the verticeheft  sults, which requires identification of the correspondieig s

generic face mesh across the whole sequence. M., of mesh nodes on the face model. To this end, we
. . register the first data frame with the face modé( about
4. Experimental Results and Error Analysis 16K nodes) during the initial fitting phase.

For each frame, we can calculate the tracking error by

In this section we provide real data experiments and er'comparing the positions of the nodesAf, to the ground

ror analysis to measure the accuracy of our tracking algo'truth, i.e. the positions of points iR, Fig. 6 (a-f) show the

rithm. We performed tracking on three subjects perform- shap-shots of the tracking sequence at different instances

ing various expressions for a total of ten sequences of 20(_)—the green dots are the markers representing poinis,in

300 frames each (at 30Hz) Each frame contains approXi-5 4 the red dots are the corresponding nodédni.e. the

g."j‘ntslgf ?\Ef; p?'w(;s{r;vgke';ea;;heltgzr:gr;C ng)g:h (.:(;)gc;tracking results. Fig. 6 (g-h) exhibit a comparative analy-
cIiI s athtt .//' N9 b ; val incIud—VI sis of the tracking errors for different representativenpsi
clip P /[ WWw.Cs. SUnyss.e u/samaras/, ) As we can see, the tracking error for most cases is around
ing opening and cI_osmg_ of the mouth (female SUbjeCt.) O 1.5mm, which is low. given that the resolution of the 3D
strongly asymmetric smile (male subject). Our technique range scan data is about 0.5mm. The achieved accuracy of
gsgksse\\jgg 3gi:dui;at’e(l)¥ t?]veecr;;athe case of topology Changetracking is comparable to that reported in [32, 17], using

) g Ot th ' . . the same dense 3D data. However overall processing time

A first error analysis is based on the difference in the

intensit I £ th d f th i f h b including initialization and parameter selection is ap@ro
Intensity values ot the nodes ol In€ generic face mesn, e'mately 6 hours per sequence on 2.2GHZ, 1GB PC (approx-
tween the initial and the subsequent frames. Initial intgns

| 10 th h nod aned after the initiabfiti imately 1 min per frame) spent mostly on harmonic map
V? ues (:j € Teks no ?hs are ass(;gtnethaTEr . et|n| '_?gn Iln calculation and the method can be easily parallelized on a
S'ep, and are taken as the ground truth. The INtensity Valug,, o comparison, the methods in [32, 17] required up
of each mesh node is calculated using bilinear interpatiatio

. . . . to 2 days per sequence with most of the time spent on tunin
of the intensities of the nearest 3D data points. If tracking ySp d P 9

. o and parameter selection by the operator.
was perfect, then the intensities of the nodes would change P y P

only due to shadowing and shading effects, which appear5. Conclusions and Future Work
due to changing geometry. For comparison purposes, we
use a traditional method based on optical flow estimation In this paper, we have presented a fully automatic
and local optimization techniques (FFD [16]) to track the method for high resolution, non-rigid dense 3D point track-
same sequence. We present the comparison between thiag using harmonic maps. A deforming generic face model
two techniques in Fig. 5 by plotting the averaged difference is employed to track the dense 3D data sequence moving at
in intensities for the mesh vertices, where the differeince f  video speeds, with the harmonic maps guiding the deforma-
each frame is calculated with respect to the first frame. Totion field. The harmonic maps are constrained, and hence
ensure fairness, we have used the same set of feature cordriven by the correspondences established between atljacen
straints for both methods. We can see that our method doesrames using an iterative scheme; the features are detected
considerably better than the FFD based method, which failsusing corner detection and other standard techniques en tex
to track large non-rigid motion and breaks down. The error, ture and curvature images. The resulting harmonic map
increases significantly as the sequence progresses for FF[Provides dense registration between the face model and the
whereas it remains relatively stable for our method, indica target frame, thereby making available the motion vectors
ing minimal tracking drift issues. for the vertices of the generic face model. The use of har-
Another measure that can be used to establish the accumonic maps, in this manner, reduces the problem of estab-



lishing correspondences in 3D, to that of 2D image registra- [16] X. Huang, N. Paragios, and D. Metaxas. Establishing

tion, which is more tractable. We have achieved high accu-
racy tracking results on facial expression sequences; with
out manual intervention, demonstrating the merits of our
algorithm for the purpose. In future work, we will exploit
the knowledge of underlying facial muscle structure to im-

[17]

pose more constraints on the tracking process, in order to[1g]
further increase accuracy. We also plan to use the proposed19]

framework for more applications like face recognition and
dynamic expression recognition for dense 3D data.
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Figure 4. (a) and (b) The initial disk,D;, with asso-
ciated texture and curvature information respectively;
is the harmonic map of; (the source frame), with the
boundary as the only constraint (as described in the previ-
ous sub-section). Similarly;+1 would be the harmonic
map of M, 1, the target frame. In order to registéf; and
M1, we iteratively augment the list of feature point con-
straints to obtain a progressively refined harmonic map of
M;, i.e. D;. We repeat the process until the difference-
error betweenD; and D;; is less tharer. (c) and (d)
are obtained by adding the feature corner constraints (the
corners of the eyes, the tip of the nose, and the corners of
the mouth.) for the calculation of the harmonic map. (e)
and (f) are a further refinement, with additional local fea-
tures (marked with blue), which are detected using optical
flow, being added to the constraints list. In our experiments
we observe that typically0 — 15 feature correspondences
place enough constraints on the harmonic map to reduce the
error below the threshold;.. (g) plots the difference-error
betweenD, and D, against the number of feature con-
straints used to define the harmonic map (in addition to the
boundary constraint). As is evident, the error recedes with
the addition of new features, until it becomes less than the
thresholder,.

°T| - - Error with Harmonic Map method
= - Error with FFD Based Method

Intensity Error
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Figure 5. (a) The plot of error between Our method and
the FFD Based method (b) FFD breaks down while track-
ing large deformations. We can see folds and clustering of
nodes around the rim of the eyes and lips

(a) Frame 1 (b) Frame 30

(d) Frame 70 (e) Frame 80

Tracking Error Measurement (Lips)

(f) Frame 95

Distance Error (mm)
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(g) Error measurement around the cheeks(h) Error Measmneanound the lips.

Figure 6. Error analysis on the tracking results of a smile
expression sequence. An additional sequence with green
markers attached to the face was acquired for error analy-
sis; the green markers are attached for verification pugpose
only and are not used for tracking. (a-f) are the snap-shots
of the tracking sequence at different instances, from neu-
tral to the peak. The red dots illustrate the corresponding
tracking results. (g,h) exhibit a comparative analysishef t
tracking errors for different representative points, abu
the cheeks and the lips respectively. Since this is a smile
sequence, error for points on the cheeks is expected to be
relatively smaller than that for points on or near the ligs, a

is evident from (g) and (h)



