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Abstract

We present a novel fully automatic method for high res-
olution, non-rigid dense 3D point tracking. High qual-
ity dense point clouds of non-rigid geometry moving at
video speeds are acquired using a phase-shifting structured
light ranging technique. To use such data for the temporal
study of subtle motions such as those seen in facial expres-
sions, an efficient non-rigid 3D motion tracking algorithm
is needed to establish inter-frame correspondences. The
novelty of this paper is the development of an algorithmic
framework for 3D tracking that unifies tracking of intensity
and geometric features, using harmonic maps with added
feature correspondence constraints. While the previous uses
of harmonic maps provided only global alignment, the pro-
posed introduction of interior feature constraints guarantees
that non-rigid deformations will be accurately tracked as
well. The harmonic map between two topological disks
is a diffeomorphism with minimal stretching energy and
bounded angle distortion. The map is stable, insensitive to
resolution changes and is robust to noise. Due to the strong
implicit and explicit smoothness constraints imposed by the
algorithm and the high-resolution data, the resulting reg-
istration/deformation field is smooth, continuous and gives
dense one-to-one inter-frame correspondences. Our method
is validated through a series of experiments demonstrating
its accuracy and efficiency.

1. Introduction and Previous Work

Automatic tracking of non-rigid 3D motion is essential
in many computer vision and graphics applications, espe-
cially dynamic facial expression analysis, such as facial ex-
pression recognition, classification, detection of emotional
states, etc. In the literature, most non-rigid object track-
ing and registration algorithms utilize image data from 2D
video sequences, e.g. [34, 4, 20, 1, 6, 31, 12, 13, 33, 30, 24].

Previous methods establishing 3D inter-frame correspon-
dences for non-rigid motion largely fall into two categories:
One depends on markers attached to the object [15, 19, 2]
or on feature correspondences manually selected by the
users [21]; the other calculates correspondences based on
the geometry using a 3D deformable/morphable model
[23, 29, 13, 36, 7, 5, 35, 9], or other 3D shape registration
algorithms such as [3, 39]. In general, most of the exist-
ing methods rely on templates with relatively few degrees
of freedom. While the recovered low dimensional configu-
rations can often be used effectively in classification, they
are hardly sufficient in many analysis applications, espe-
cially dynamic facial expression analysis, since many dis-
tinct characteristics of a person’s expression lie in the subtle
details such as the wrinkles and the furrows that are gener-
ated by highly local skin deformations. The major contri-
bution of this paper is the use of the elements of conformal
geometry theory for the 3D tracking problem, which to the
best of our knowledge, has not been attempted before. Al-
though our method was implemented in the context of fa-
cial expression tracking, it is general and could be applied
to other classes of similarly deforming objects.

Recent technological advances in digital imaging, digital
projection display and personal computers have made real
time 3D shape acquisition increasingly more feasible. Such
ranging techniques include structured light [26, 25], and
space-time stereo [38, 8]. These systems can capture dense
3D data at a high frame rate. Recently, a high-resolution 3D
expression data acquisition system was developed in [26]
which captures highly accurate geometry at speeds that ex-
ceed regular video frame rate. Such high-quality data is
very attractive for the analysis of facial expressions. How-
ever, since the dense data samples in these 3D face scans are
not registered in object space, inter-frame correspondences
can not be established, which makes the tracking of facial
features, temporal study of facial expression dynamics and
other analysis difficult. For this purpose, a number of track-
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Figure 1. Snapshots from a tracking Sequence: a) Initial data frame b)Initial tracked frame c) Data at the expression peak d)
Tracked data at the peak e) Close-up at the peak

ing algorithms have been proposed recently for 3D facial
expression data [38, 32]. Tracking methods based on op-
tical flow estimation[38, 13] can be sensitive to noise for
textureless regions. A hierarchical tracking framework for
high resolution 3D dynamic expression data was presented
in [32], using a deformable generic face model. However, it
suffers from problems likefoldingandclustering, which are
inherent to the methods employing local optimization tech-
niques such as FFD. Also, the face model needs to be man-
ually divided into several deformable regions, with associ-
ated shape and motion control parameters. This initial seg-
mentation, along with the associated parameters has to be
recovered statistically, requiring many experiments for each
different expression of every subject. Although this might
be acceptable for certain applications like motion capture
for computer graphics, it requires prohibitive amounts of
time and effort for processing of the large number of data-
sets required for data driven applications in facial expres-
sion analysis and synthesis[5].

In this paper, we present a novel fully automatic method
for high resolution, non-rigid dense 3D point tracking. High
quality dense point clouds of facial geometry moving at
video speeds are acquired using a phase-shifting based
structured light ranging technique [26]. To use such data
for temporal study of the subtle dynamics in expressions, an
efficient non-rigid 3D motion tracking algorithm is needed
to establish inter-frame correspondences. In this paper, we
propose such an algorithmic framework that uses a math-
ematical tool called harmonic maps [27, 22, 10, 11]. Har-
monic maps were used in [37] to do surface matching, al-
beit focusing on rigid transformations. Given the source
manifold M and the target manifoldD, only the bound-
ary conditionu|∂M : ∂M → ∂D was used to constrain
and uniquely determine the harmonic mapu : M → D.
For applications like high resolution facial tracking though,
we need to account for non-rigid deformations, with a high
level of accuracy. To this end, we introduce additional fea-
ture correspondence constraints, in addition to the boundary
constraint in our implementation of harmonic maps. We se-

lect a set ofmotion-representativefeature corners (for ex-
ample, for facial expression tracking, we select corners of
eyes, lips, eye brows etc.) and establish inter-frame corre-
spondences using commonly used techniques (for example,
hierarchical matching used in [34]). We can then integrate
these correspondence constraints with the boundary condi-
tion to calculate harmonic maps, which not only account for
global rigid motion, but also subtle non-rigid deformations
and hence achieve high accuracy registration and tracking.

The theory of harmonic maps is based on conformal ge-
ometry theory [14, 28]; the harmonic map between two
topological disks is a diffeomorphism with minimal stretch-
ing energy and bounded angle distortion. Harmonic maps
are invariant for the same source surface with different
poses, thus making it possible to account for global rigid
motion. Harmonic maps are highly continuous, stable and
robust to noise. They depend on the geometry in a con-
tinuous manner. A very important property, which governs
our registration and tracking algorithm is that the harmonic
map is one-to-one. To register two frames, we align their re-
spective harmonic maps as closely as possible by imposing
the suitable boundary and feature constraints.The motiva-
tion to do so is to establish a common parametric domain
for the two surfaces, which, coupled with the above men-
tioned property, allows to recover 3D registration between
the two frames. In our case, the harmonic maps are dif-
feomorphisms, that is one to one and on-to, and hence lend
themselves as a natural choice for surface parameterization
in tracking applications.

As part of our framework, a deforming generic face
model is employed to track the dense 3D data sequence
moving at video speeds, with the harmonic maps guiding
the deformation field. The harmonic maps are constrained,
and hence driven by the feature correspondences estab-
lished between adjacent frames using aniterative scheme;
the feature correspondences are made on texture and curva-
ture images using standard techniques, such as corner de-
tection and optical flow. Most surface regions have strong
features either in intensity or shape images. Our framework



uses both simultaneously providing denser feature tracking.
Harmonic maps, thus, help us to simplify a 3D surface reg-
istration problem to a 2D image matching problem. The re-
sulting harmonic map provides dense registration between
the face model and the target frame, thereby computing the
motion vectors for the vertices of the generic face model.
Our system can not only track global facial motion that is
caused by muscle action, but also subtler expression details
that are generated by highly local skin deformations. We
have achieved high accuracy tracking results on facial ex-
pression sequences, which are comparable to those reported
in [32, 17], using the same dense 3D data, while minimiz-
ing the amount of human labor required for preprocessing
and initialization. The above mentioned level of accuracy,
coupled with theautomatic natureof our method, demon-
strates the merits of our framework for the purpose of high
resolution tracking of non-rigid 3D motion.

The remainder of the paper is organized as follows: In
Section 2, we give an overview of harmonic mapping. Sec-
tion 3 explains our tracking method in detail. We first de-
scribe the global alignment of 3D scans, followed by a de-
scription of the registration algorithm based on harmonic
mapping and an iterative refinement scheme using local fea-
tures. Experimental results are presented in Section 4, and
we conclude with a discussion and future work in Section 5.

2. Harmonic Mapping

An important contribution of our tracking method is to
reduce the non-rigid 3D tracking problem to a 2D image
registration problem, which has been extensively studied.
We are dealing with 3D surfaces, but since they are mani-
folds, they have an inherent 2D structure which can be ex-
ploited to make the problem more tractable using harmonic
maps.

A harmonic mapH : M → D can be viewed as an em-
bedding from a manifoldM with disk topology to a planar
graphD. A harmonic map is a critical point for the har-
monic energy functional,

E(H) =

∫
M

|dH |2dµM,

and can be calculated by minimizingE(H). The norm of
the differential|dH | is given by the metric onM andD,
anddµM is the measure onM [27, 22, 10, 11]. Since our
source manifoldM is in the form of adiscretetriangular
mesh, we approximate the harmonic energy as [10, 37, 14],

E(H) =
∑

[v0,v1]

k[v0,v1]|H(v0) − H(v1)|
2, (1)

where[v0, v1] is an edge connecting two neighboring ver-
ticesv0 andv1, andk[v0,v1] is defined as

1

2
(

(v0 − v2) · (v1 − v2)

|(v0 − v2) × (v1 − v2)|
+

(v0 − v3) · (v1 − v3)

|(v0 − v3) × (v1 − v3)|
),

where{v0, v1, v2} and{v0, v1, v3} are two conjuncted tri-
angular faces.

By minimizing the harmonic energy, a harmonic map
can be computed using the Euler-Lagrange differential
equation for the energy functional, i.e.∆E = 0, where∆
is the Laplace-Beltrami operator [27, 22, 10, 11]. This will
lead to solving a sparse linear least-square system for the
mappingH of each vertexvi [10, 37, 14]. If the boundary
condition is given,

H |∂M : ∂M → ∂D, (2)

then the solution exists and is unique.
For tracking purposes though, we need to align the two

harmonic maps closely together (as explained in Section 1),
and hence track interior non-rigid deformations as well. For
this purpose, we also incorporate additional hard constraints
to establish interior feature correspondences and to han-
dle non-disk topologies (e.g., a 3D face scan with an open
mouth). Suppose we have a point on an inner-boundary or
an interior feature pointvi on the 3D meshM , which should
be mapped to a corresponding pointwi on the target 2D
planeD. We can add it as a hard constraintH(vi) = wi

to the system from Equation 1 and 2. However, the result-
ing harmonic energy is expected to increase due to the addi-
tional hard constraints introduced. In order to reduce the en-
ergy to achieve a smoother mapping, we use the Neumann
boundary condition, a soft constraint. This condition just
constrains the boundary points ofM to lie on the boundary
of the 2D disk D, the exact positions being governed by
the minimization of harmonic energy criteria. It is different
from the fixed boundary condition used for surface match-
ing [37], in which each boundary point on the3D meshM
is mapped to a fixed point on the2D disk, making it a hard
constraint. In our method, all the interior feature correspon-
dences on the face scans which can be reliably established
are given the maximum weight, and hence are chosen as
hard constraints. In the absence of any strong features on
the boundary, the boundary condition is given a relatively
lower weight, and hence thesoft boundary constraintis em-
ployed to minimize the harmonic energy.

Intuitively, consider the manifoldM to be made of a
sheet of rubber [10]. The harmonic map with just the
boundary constraint can be thought of as stretching the
boundary ofM over the boundary of the target2D disk
D. In this case, each point on the boundary ofM is as-
signed a fixed location on the boundary ofD, where it will
be nailed down. The interior of the sheet then rearranges
to minimize the stretching(or folding), thus minimizing the
energy. Now, adding extra feature constraints is analogous
to clamping down the rubber sheet at certain interior points.
The harmonic map with added feature constraints acts like
a clamped rubber sheet, rearranging around the nailed down
interior points to achieve the most stable configuration. The



points on the boundary of the rubber sheetM still remain
on the boundary ofD, though they are free toslide along
it (Neumann boundary condition, a soft constraint) to help
achieve the most stable configuration.

In our work, we compute harmonic maps between a sur-
face undergoing non-rigid deformations (e.g. a human face)
and a canonical unit disk on the plane. Harmonic maps have
many merits which are valuable for tracking purposes:

• First, the harmonic map is computed through global opti-
mization, and takes into account the overall surface topology.
Thus it does not suffer fromlocal minima, folding, cluster-
ing, which are common problems due to local optimization.

• Second,the harmonic map is not sensitive to the resolution
of the face surface, and to the noise on the surface.Even
if the data for the input surface is noisy, the result won’t be
affected significantly.

• Third, the harmonic map doesn’t require the surface to be
smooth. It can be accurately computed even when the surface
includes sharp features.

• Forth, in our case, since the range of the map is a unit disk
which is convex, the harmonic map exists, and is adiffeo-
morphism, namely, the map is one to one and on-to. So it
can allow us to establish correspondences on 2D and recover
3D registration from the same.

• Fifth, the harmonic map is determined by the metric, not the
embedding. This implies that theharmonic map is invariant
for the same face surface with different poses. Furthermore,
if there is not too much stretching between two faces with dif-
ferent expressions, they will induce similar harmonic maps.
Because our dynamic range sequences are acquired at a high
frame rate (40 Hz), we can assume that the local deformation
between two adjacent frames is small.

Furthermore, harmonic maps are easy to compute and
robust to numerical errors. By using a traditional finite ele-
ment method [18], they are easy to implement.

3. The Non-Rigid Tracking Algorithm

In this section, we present our novel fully automatic
method for high resolution, non-rigid dense 3D point track-
ing using harmonic maps. We first describe the global align-
ment of 3D scans, followed by a description of the registra-
tion algorithm based on harmonic mapping and an iterative
refinement scheme using local features.

3.1. Data Preparation and Initialization

The dynamic range sequences used in this paper are
collected by a phase-shifting based structured light rang-
ing system [26]. When scanning faces, the real-time 3D
shape acquisition system returns high quality dense point
clouds of facial geometry with an average of 75 thousand

3D measurements per frame, at a 40Hz frame rate. The
RMS (Root-Means-Squared) error of the 3D range data is
about 0.05mm. Small holes around brows, eyes, nose, etc.
are filled by a simple interpolation technique.

However, since the dense data samples in these 3D face
scans are not registered in object space, inter-frame corre-
spondences can not be established. Furthermore, the dense
point clouds differ across the scans both in terms of the
number of data samples as well as the relative positions
of the samples on the surfaces. To solve these problems,
a generic face model (a coarser face mesh) is fitted to the
first 3D scan frame in the initialization step, by a variational
Free-Form Deformation (FFD) shape registration method
[32, 16]. The FFD technique is employed only for fitting
of the first frame, and not for subsequent tracking.

3.2. Global Alignment and Boundary Identification

In the captured sequences, in addition to the non-rigid
facial expression motion, there is also a certain amount of
rigid head motion involved. To account for the latter, we
align the3D face scans globally. To start with, we manually
mark and identify the boundary of the first frame. We can
then apply the Iterative Closest Point(ICP) algorithm: for
each sample on theidentified boundary of the first frame,
we find the closest sample on subsequent frames and apply
a rigid body transformation that minimizes the distance be-
tween corresponding points [3]. Once we have the bound-
ary of the initial frame and the rigid transformation, we can
align the face scans globally and identify the boundaries of
the subsequent frames.

3.3. Initial Coarse Registration

Once we have the global alignment, we want to capture
the non-rigid deformation between two adjacent framesMi

andMi+1. This inter-frame registration problem, resulting
in a dense mapR : Mi → Mi+1, is solved by finding a
coarse set of interior feature correspondences.

The relative ease of finding feature correspondences on
2D images as compared to 3D scans is the motivation for
the next step of mappingMi and Mi+1, to 2D disksDi

and Di+1 respectively, using the boundary constraint as
described in Section 2. According to [37], the harmonic
mapping is robust to boundary variation and occlusion.
We define these mappings asHi: Mi → Di and Hi+1:
Mi+1 → Di+1. Following the disk mapping, we select
a sparse set of easily detectable motion representative fea-
ture corners on the disks (for example, for facial expression
tracking, we select corners of eyes, corners of lips, tip of
the nose etc.) using texture and shape information. For the
latter, we also adopted the idea of harmonic shape images
as in [37], associating the curvature information of vertices
in Mi to the corresponding ones inDi. In practice, these
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Figure 2. (a) The acquired 3D face scan data. (b) The
resulting harmonic map onto a2D disk with associated
texture information. (c) The resulting harmonic map with
associated curvature information, where brighter intensity
signifies higher curvature.

feature corners usually have peak curvature value and can
be easily detected by a pre-defined threshold. Fig. 2 shows
an example of harmonic maps generated from one frame.

Once we have the set of correspondences on the2D disks
Di andDi+1, we can establish the correspondences on the
3D face scanMi and the diskDi+1, since the harmonic
mapHi is one-to-one. Following this, as explained in Sec-
tion 2, we augment the boundary constraint used to calcu-
late Hi with these additional feature-correspondence con-
straints to define a new harmonic mapH ′

i : Mi → D′

i.
As H ′

i is driven by motion representative feature corre-
spondences between the two frames, it captures the inter-
frame non-rigid deformation at a coarse level. We can then
overlayD′

i onto Di+1 to recover the inter-frame registra-
tion on 2D. Once again, we use the fact that the harmonic
maps are one-to-one to calculate the dense mapR required
for registration of3D frames. Harmonic maps, thus, help
us simplify a 3D non-rigid tracking problem to a 2D image
registration problem.

The algorithm is illustrated in Fig. 3 by considering the
example of a synthetic surfaceS undergoing non-rigid de-
formation.So andSt are the initial and final configurations
respectively, andDo and Dt are the corresponding har-
monic maps with only the boundary constraint. We can no-
tice that althoughDo andDt conform to each other around
the boundary, the interior non-rigid deformation is still un-
accounted for. Now,D′

o, a new harmonic map forSo is cal-
culated by mapping certain motion representative features
on So to their corresponding positions onDt, as described
earlier. This is done in order to align the two mapsD′

o and
Dt as closely as possible, so that using the one-to-one prop-
erty of harmonic maps, a dense registration betweenSo and
St can be recovered. As we can observe,D′

o andDt are
similar to each other even in the interior, thus providing ac-
curate registration.

3.4. Iterative Refinement

The registration achieved from the previous step, al-
though capable of capturing the coarse level facial defor-
mation, is still insufficient to track subtle expressions. We

(a) (b)

(c) (d) (e)

Figure 3. (a) So: Initial configuration of surface (b)St:
Surface after non-rigid deformation (c, d)Do, Dt: Har-
monic Map ofSo andSt respectively, with the hard bound-
ary constraints only (e)D′

o: Harmonic map ofSo with the
’tip of the nose’ as an additional feature-correspondence
constraint. We can see that imposing correspondence con-
straints alignsD′

o andDt better (as explained in Section 2),
resulting in accurate registration.

adopt an iterative refinement scheme to improve the accu-
racy of the registration by progressively incorporating cor-
respondence constraints of more local features. As part of
this scheme, we keep on augmenting the set of sparse cor-
respondences established in the previous step till it is dense
enough to capture the facial deformation.

In particular, we define the difference imageDfi for D′

i

andDi+1 asDfi(u, v) = |D′

i(u, v) − Di+1(u, v)|2. Us-
ing D′

i andDi+1 as calculated in the previous step, we find
their difference imageDfi and identify the regions corre-
sponding to significant differences. These regions indicate
the areas on the face undergoing deformation, the motion
of which has not been captured by the existing correspon-
dence constraints. Because our dynamic range sequence is
acquired at a high frame rate (40Hz), we can assume that
the local deformation is relatively small, which allows us
to apply standard 2D image registration methods within the
difference regions. For high accuracy, we only consider ar-
eas with local features, which can be detected easily by ap-
plying a Laplacian filter to the imageDi andDi+1.

A new D′

i is calculated by augmenting the set of corre-
spondences with the new ones, which are kept if the new
difference error betweenD′

i andDi+1 decreases, and dis-
carded otherwise. We keep on iterating until the difference-
error drops below the prescribed thresholdǫL. When we
stop, as described in the previous subsection, we overlay
D′

i on Di+1 to establish a dense set of correspondences,
and hence recover inter-frame registration. This process is
illustrated in Fig. 4.

We tackle the problem ofdrifting, a common issue in
most tracking methods, in the following manner. During
the initial fitting step, we identify some of the feature nodes



on the mesh, like corners of the mouth etc. We then find
the data points inMi closest to these feature nodes, and
constrain them to correspond to the respective features in
the next data frame, i.e.Mi+1. Consequently, the distinct
features on the face are always tracked correctly, thereby
reducing the drift for other parts of the face.

Once we have the dense registration, we calculate the
motion vectors for the vertices of the generic face mesh.
For instance, to deform the generic face mesh fromMi to
Mi+1, we localize each mesh vertexmj inside a data tri-
angle ofMi, followed by finding the corresponding data
triangle ofMi+1 and localizingmj in Mi+1 using bilin-
ear interpolation. We continue this process for every frame,
thereby calculating the motion vectors for the vertices of the
generic face mesh across the whole sequence.

4. Experimental Results and Error Analysis

In this section we provide real data experiments and er-
ror analysis to measure the accuracy of our tracking algo-
rithm. We performed tracking on three subjects perform-
ing various expressions for a total of ten sequences of 200-
300 frames each (at 30Hz) Each frame contains approxi-
mately 80K 3D points, whereas the generic face mesh con-
tains 8K nodes. The tracking results are available as video
clips athttp : //www.cs.sunysb.edu/̃samaras/, includ-
ing opening and closing of the mouth (female subject) or
strongly asymmetric smile (male subject). Our technique
tracks very accurately even in the case of topology change
and severe ’folding’ of the data.

A first error analysis is based on the difference in the
intensity values of the nodes of the generic face mesh, be-
tween the initial and the subsequent frames. Initial intensity
values to the mesh nodes are assigned after the initial fitting
step, and are taken as the ground truth. The intensity value
of each mesh node is calculated using bilinear interpolation
of the intensities of the nearest 3D data points. If tracking
was perfect, then the intensities of the nodes would change
only due to shadowing and shading effects, which appear
due to changing geometry. For comparison purposes, we
use a traditional method based on optical flow estimation
and local optimization techniques (FFD [16]) to track the
same sequence. We present the comparison between the
two techniques in Fig. 5 by plotting the averaged difference
in intensities for the mesh vertices, where the difference for
each frame is calculated with respect to the first frame. To
ensure fairness, we have used the same set of feature con-
straints for both methods. We can see that our method does
considerably better than the FFD based method, which fails
to track large non-rigid motion and breaks down. The error,
increases significantly as the sequence progresses for FFD
whereas it remains relatively stable for our method, indicat-
ing minimal tracking drift issues.

Another measure that can be used to establish the accu-

racy of a tracking method is the displacement error of the
mesh nodes from the ground truth. As part of our second
experiment to calculate the error measure in terms of abso-
lute displacements, we chose a setDe of points spread uni-
formly over the data surface as test points, such that their
motions form a representative subset of the motion vectors
for all the vertices, i.e. the set of all the motion vectors is
sampled sufficiently. To establish the ground truth, we at-
tach markers on the face of the subject at locations given by
the setDe. The markers are for verification purpose only
and are not used for tracking. In order to be detected, the
diameter of each marker is about 3mm. For error analysis,
we need to compare the ground truth against our tracking re-
sults, which requires identification of the corresponding set
Me of mesh nodes on the face modelM . To this end, we
register the first data frame with the face modelM ( about
16K nodes) during the initial fitting phase.

For each frame, we can calculate the tracking error by
comparing the positions of the nodes inMe to the ground
truth, i.e. the positions of points inDe. Fig. 6 (a-f) show the
snap-shots of the tracking sequence at different instances;
the green dots are the markers representing points inDe

and the red dots are the corresponding nodes inMe, i.e. the
tracking results. Fig. 6 (g-h) exhibit a comparative analy-
sis of the tracking errors for different representative points.
As we can see, the tracking error for most cases is around
1.5mm, which is low, given that the resolution of the 3D
range scan data is about 0.5mm. The achieved accuracy of
tracking is comparable to that reported in [32, 17], using
the same dense 3D data. However overall processing time
including initialization and parameter selection is approxi-
mately 6 hours per sequence on 2.2GHZ, 1GB PC (approx-
imately 1 min per frame) spent mostly on harmonic map
calculation and the method can be easily parallelized on a
cluster. In comparison, the methods in [32, 17] required up
to 2 days per sequence with most of the time spent on tuning
and parameter selection by the operator.

5. Conclusions and Future Work

In this paper, we have presented a fully automatic
method for high resolution, non-rigid dense 3D point track-
ing using harmonic maps. A deforming generic face model
is employed to track the dense 3D data sequence moving at
video speeds, with the harmonic maps guiding the deforma-
tion field. The harmonic maps are constrained, and hence
driven by the correspondences established between adjacent
frames using an iterative scheme; the features are detected
using corner detection and other standard techniques on tex-
ture and curvature images. The resulting harmonic map
provides dense registration between the face model and the
target frame, thereby making available the motion vectors
for the vertices of the generic face model. The use of har-
monic maps, in this manner, reduces the problem of estab-



lishing correspondences in 3D, to that of 2D image registra-
tion, which is more tractable. We have achieved high accu-
racy tracking results on facial expression sequences, with-
out manual intervention, demonstrating the merits of our
algorithm for the purpose. In future work, we will exploit
the knowledge of underlying facial muscle structure to im-
pose more constraints on the tracking process, in order to
further increase accuracy. We also plan to use the proposed
framework for more applications like face recognition and
dynamic expression recognition for dense 3D data.
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Figure 4. (a) and (b) The initial disk,Di, with asso-
ciated texture and curvature information respectively.Di

is the harmonic map ofMi (the source frame), with the
boundary as the only constraint (as described in the previ-
ous sub-section). Similarly,Di+1 would be the harmonic
map ofMi+1, the target frame. In order to registerMi and
Mi+1, we iteratively augment the list of feature point con-
straints to obtain a progressively refined harmonic map of
Mi, i.e. D

′

i. We repeat the process until the difference-
error betweenD′

i and Di+1 is less thanǫL. (c) and (d)
are obtained by adding the feature corner constraints (the
corners of the eyes, the tip of the nose, and the corners of
the mouth.) for the calculation of the harmonic map. (e)
and (f) are a further refinement, with additional local fea-
tures (marked with blue), which are detected using optical
flow, being added to the constraints list. In our experiments,
we observe that typically10 − 15 feature correspondences
place enough constraints on the harmonic map to reduce the
error below the thresholdǫL. (g) plots the difference-error
betweenD′

i andDi+1 against the number of feature con-
straints used to define the harmonic map (in addition to the
boundary constraint). As is evident, the error recedes with
the addition of new features, until it becomes less than the
thresholdǫL.
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Figure 5. (a) The plot of error between Our method and
the FFD Based method (b) FFD breaks down while track-
ing large deformations. We can see folds and clustering of
nodes around the rim of the eyes and lips
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(g) Error measurement around the cheeks.(h) Error Measurement around the lips.

Figure 6. Error analysis on the tracking results of a smile
expression sequence. An additional sequence with green
markers attached to the face was acquired for error analy-
sis; the green markers are attached for verification purposes
only and are not used for tracking. (a-f) are the snap-shots
of the tracking sequence at different instances, from neu-
tral to the peak. The red dots illustrate the corresponding
tracking results. (g,h) exhibit a comparative analysis of the
tracking errors for different representative points, around
the cheeks and the lips respectively. Since this is a smile
sequence, error for points on the cheeks is expected to be
relatively smaller than that for points on or near the lips, as
is evident from (g) and (h)


