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Abstract

We propose Micro-baseline Structured Light (MSL), a

novel 3D imaging approach designed for small form-factor

devices such as cell-phones and miniature robots. MSL op-

erates with small projector-camera baseline and low-cost

projection hardware, and can recover scene depths with

computationally lightweight algorithms. The main observa-

tion is that a small baseline leads to small disparities, en-

abling a first-order approximation of the non-linear SL im-

age formation model. This leads to the key theoretical result

of the paper: the MSL equation, a linearized version of SL

image formation. MSL equation is under-constrained due to

two unknowns (depth and albedo) at each pixel, but can be

efficiently solved using a local least squares approach. We

analyze the performance of MSL in terms of various sys-

tem parameters such as projected pattern and baseline, and

provide guidelines for optimizing performance. Armed with

these insights, we build a prototype to experimentally exam-

ine the theory and its practicality.

1. Introduction

Structured light (SL) is one of the most widely used 3D

imaging techniques. Due to simple hardware and high depth

resolution, SL is suitable for diverse applications, such as

3D modeling, biometrics, gaming, and user interfaces. A

typical SL system consists of a projector that illuminates

the scene of interest with coded patterns, and a camera that

images the scene. Depth at each scene point is computed via

triangulation, after determining correspondences between

projector and camera pixels.

Like all triangulation-based methods, SL requires a large

baseline between projector-camera pair for reliable depth

estimation [15, 31]. However, there are several emerg-

ing applications that increasingly rely on small form-factor

devices. Imagine a cell-phone based augmented reality
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Figure 1: Structured light on constrained devices. Small

form-factor devices have severe constraints such as (i) small

projector-camera baseline, (ii) low-cost hardware with limited ca-

pabilities, and (iii) low computational power. (b) We propose

Micro-baseline Structured light, a novel approach that linearizes

the SL image formation model. This enables fast and accurate

depth recovery with low complexity projection devices, and light-

weight computations.

(AR) application building a 3D model of its surround-

ings [19, 11, 29], or a micro-drone [22] identifying obsta-

cles such as tree twigs while flying through a dense forest,

or a 3D camera on a thin endoscope [28] aiding a complex

surgery inside the human body (Figure 1 (a)). Due to their

small size, these devices cannot accommodate large base-

lines, making it challenging for existing SL approaches to

recover accurate scene geometry.

In addition to small size, many of these devices are fur-

ther constrained by low computation power, as well as low

device complexity. For example, while it may be possible
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to have a simple, single-pattern projector on these devices

that uses a static mask or a diffractive optical element (Fig-

ure 1 (a)), it may be considerably more challenging to place

a full projector that can dynamically change the projected

patterns. This precludes a large family of SL techniques,

called multi-shot SL [23, 3], that require projecting sev-

eral coded patterns sequentially. However, approaches that

use a single pattern often require complex correspondence

matching or learning algorithms, that may be prohibitively

expensive given a limited computational budget and lack of

sufficient data.

We propose a novel SL approach called Micro-baseline

Structured Light (MSL), which is tailored to such highly

constrained devices, thereby opening up the possibility of

deploying SL on small, low-power and low-complexity de-

vices. MSL works under the constraint of a small (micro)

projector-camera baseline, as shown in Figure 1 (b), and is

based on the following observation: small baseline leads

to small disparities between projector and camera pixels.

Our key theoretical insight is that with small disparities, the

structured light image formation model, which is otherwise

non-linear in the unknowns (depths and albedos), can be

linearized via a first order approximation. This leads to the

derivation of a new linear SL constraint, the micro-baseline

structured light (MSL) equation, which relates scene albe-

dos and depths to the measured intensities.

Theoretical and practical performance analysis: The

MSL equation is under-constrained with two unknowns

(depth and albedo) at each pixel and hence is impossible

to solve without additional constraints. We design a lo-

cal least-squares approach, which assumes local constancy

of depth and albedo and expresses the MSL equation as a

linear system with a 2 × 2 matrix, called the MSL matrix.

Depth is recovered by inverting the 2 × 2 MSL matrix for

each pixel, which can be done in a computationally efficient

manner. The depth recovery performance of MSL can be

characterized in terms of the properties of the MSL matrix,

which, surprisingly, depend only on the projected pattern.

Based on this observation, we provide practical guidelines

for designing the projected pattern for the MSL matrix to be

reliably invertible.

Real-world applicability and limitations: In order to re-

lax the restrictive assumption of locally constant shape and

albedo made for theoretical analysis, we design a practi-

cal MSL approach that captures two images - one with pro-

jected pattern, and another by turning off the projector. The

no-pattern image is used as a guide image [10] to recover

depth for scenes with complex texture, while maintaining

low computational and hardware complexity so that the pro-

jector can still be implemented with a single, static mask.

However, due to the extra image, MSL is not strictly a

single-shot technique and may suffer from high-speed mo-

tion artifacts.

Scope: MSL is specifically tailored to, and optimized for

constrained devices with small baseline, low-power, and

low complexity; it is not meant to be a general-purpose

SL technique that can replace existing approaches. Indeed,

in unconstrained scenarios (large baseline, availability of

data or high computing power, ability to project multiple

patterns), existing SL techniques will achieve better per-

formance as compared to MSL. However, on devices with

strong constraints, MSL offers a light-weight solution while

achieving good accuracy.

2. Related Work

Structured light coding techniques: Broadly, SL tech-

niques can be classified into multi-shot and single-shot

methods [25]. Multi-shot techniques such as light strip-

ing [2], Gray coding [23], and sinusoidal phase-shifting [3]

estimate shape by projecting multiple patterns in quick

succession. These techniques can recover high-precision

depths with computationally simple decoding algorithms,

but require complex projection devices (e.g., LCD, DMD)

that can dynamically change the projected patterns, making

them unsuitable for dynamic scenes and low-complexity de-

vices such as cell-phones.

Single-shot techniques project only a single pattern,

and rely on coding of projector correspondences in in-

tensity [32], color [8, 13], or in a local neighborhood

[9, 20, 14]. Single pattern techniques are well suited for

dynamic scenes; however, these techniques often use com-

putationally complex decoding algorithms, requiring ded-

icated hardware [1] for real-time performance. There are

single-shot methods with relatively simple decoding (e.g.,

Fourier Transform Profilometry (FTP) [30]), but they make

strong assumptions on the scene’s texture and depths.

Real-time SL systems: There are approaches for perform-

ing high-speed (1000 fps) SL, either with high-cost high-

speed cameras [12] that cannot be ported to mobile setups,

or more recently, with learning-based approaches such as

HyperDepth [24] and UltraStereo [7]. With sufficient data,

and dedicated hardware such as Kinect [1], these methods

have shown to be fast and accurate. Our goal is differ-

ent. We aim to develop a method with a simple, analytical,

closed-form decoding approach that leverages a differential

formulation of conventional SL equation under small base-

line constraint. An interesting future research direction is

to augment MSL with data-driven techniques to potentially

further increase accuracy and speed.

3. Structured Light Preliminaries

We start by describing the image formation model for an

SL system, in order to understand the role of the projector-

camera baseline in a structured light system.
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Image formation model. Consider a projector-camera

pair as shown in Fig. 1 (b). We assume a rectified projector-

camera configuration, where the projector and camera cen-

ters are shifted horizontally by B units. We further assume

that both the projector and camera have the same spatial

resolution and focal length f . These assumptions are made

only for ease of exposition; the presented analysis and the

techniques are valid for general configurations and system

parameters.

Let P (x, y) be the projected pattern. The image intensity

captured at a camera pixel (x, y) is given by:

I(x, y) = A(x, y) + ρ(x, y)P (x+ u(x, y), y) , (1)

where A(x, y) is contribution from ambient light, ρ(x, y)
is the reflectivity term that encapsulates scene texture

and BRDF, projector brightness and intensity fall-off, and

u(x, y) = Bf
z

is the disparity term that encodes scene

depths z. Note that Eq. (1) is a single, non-linear equation

in three unknowns: A, ρ, and disparity u.

Estimating u: The disparity u is computed by find-

ing correspondences between projector and camera pix-

els. Multi-shot techniques estimate correspondences by

uniquely coding each projector column. In contrast, single-

shot techniques encode the correspondences in local neigh-

borhood, intensity or frequency of a single projected pat-

tern, but rely on global reasoning and complex optimization

algorithms to decode accurately.

In the next section, we design a technique that requires

projection of a single pattern (but capture of two images),

and yet, is computationally cheap so that it can be efficiently

implemented on power limited systems. Further, although

conventional SL systems use as large a baseline as possi-

ble, the proposed technique is tailored to small form-factor

devices that allow only a small (micro) baseline between

projector and camera.

4. Micro-baseline Structured Light

We now consider an SL system with a small projector-

camera baseline B, for example, that allowed by a cell-

phone or a micro-drone geometry. Since the disparity u =
Bf
z

at a pixel is proportional to B, given a scene depth z,

and camera focal length f , a small B results in small dis-

parities. Our key observation is that in such an SL system

with small disparities, the image formation model (Eq. 1)

can be linearized via a Taylor first order approximation:

I(x, y) ≈ A(x, y) + ρ(x, y)(P (x, y) + u(x, y)P ′(x, y))

=⇒ I(x, y) ≈ A(x, y) + ρ(x, y)P (x, y) + ũ(x, y)P ′(x, y),
(2)

where P ′(x, y) = ∂P
∂x

(x, y) and ũ(x, y) = ρ(x, y)u(x, y).

Non-pattern image: Eq. (2) is a linear equation, albeit

in three unknowns. To reduce the number of unknowns,

we capture an extra image Ino pattern with no projected pat-

tern, by switching off the projector. This extra image mea-

sures the effect of ambient light, i.e., Ino pattern(x, y) =
A(x,y). We then subtract Ino pattern from the pattern image

Ipattern(x, y) to remove the ambient component. The result-

ing difference image I(x, y) = Ipattern(x, y)−Ino pattern(x, y)
is given as:

I(x, y) ≈ ρ(x, y)P (x, y) + ũ(x, y)P ′(x, y). (3)

We call Eq. (3) the Micro-baseline Structured Light (MSL)

constraint. Instead of the original non-linear SL equation,

the MSL constraint is linear in ũ(x, y), and ρ(x, y), and

hence the projector-camera correspondences can be solved

efficiently with low computational complexity. While re-

moval of ambient light requires an extra image, it requires

only turning off the projector. This maintains the simplicity

of the projector that still needs to project only a single, static

pattern. Henceforth, we use Eq. (3) for upcoming analyses.

Local least squares. While Eq. (3) is linear, the two un-

knowns, ρ(x, y) and ũ(x, y) make it an under-constrained

linear system. One way to further regularize it is to assume

that both albedo and disparity are constant in a small neigh-

borhood1 which increases the number of equations per un-

known. Consider a window of n × n pixels in the camera

image. By assuming a constant albedo ρ0 and disparity u0

within this window, the modified MSL constraint equations

for pixels (xl, ym), 1 ≤ l,m ≤ n can be written as:

I(xl, ym) = ρ0P (xl, ym) + ρ0u0P
′(xl, ym). (4)

the set of linear equations have a unique solution for n > 1
and can be obtained using linear least squares.

We now provide a simple algorithm to compute

albedo and disparity within the window. Let ic =
[I(x1, y1), · · · , I(xn, yn)]

⊤ be the vector of camera mea-

surements. Similarly, let p = [P (x1, y1), · · · , P (xn, yn)]
⊤

be the vector of projector intensities, and px =
[P ′(x1, y1), · · · , P

′(xn, yn)]
⊤ be vector of derivative of

pattern along x-axis. The set of equations within the win-

dow can then be written as,

ic = ρ0p+ ũ0px =
(
p px

)
︸ ︷︷ ︸

A

(
ρ0
ũ0

)
, (5)

where ũ0 = ρ0u0 and A =
(
p px

)
. Using a least

squares approach requires multiplication by A⊤ on both

1These assumptions are made for ease of analysis, and will be relaxed

later in the paper.
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sides, which gives us, A⊤ic = A⊤A

(
ρ0
ũ0

)
,

(
p⊤ic
p⊤

x ic

)
=

(
p⊤p p⊤

x p

p⊤px p⊤

x px

)

︸ ︷︷ ︸
MMSL

(
ρ0
ũ0

)
(6)

We call MMSL the Micro-baseline Structured Light matrix,

or MSL matrix in short. Eq. (6) states that with the pro-

posed approach, estimation of disparities requires simply

inverting a 2 × 2 matrix at every pixel, which is computa-

tionally cheap, and can be easily parallelized.

Relation to differential methods. The above analysis

bears similarities to recent differential approaches designed

for photometric stereo [5] and light-field-based motion esti-

mation [18]. These approaches also linearize an otherwise

hard-to-solve non-linear problem, resulting in tractable

analysis and solutions. In the same spirit, MSL can be con-

sidered as a differential version of SL.

Relation to optical flow. It is also worth noting that the

MSL matrix is similar to the structure tensor in Lucas-

Kanade tracker [16]. Similar linearization of dispar-

ity/optical flow and formulating a 2 × 2 matrix have been

explored before in the context of stereo vision [6, 21]. A

key difference between structure tensor and the MSL ma-

trix is that the MSL matrix depends only on the projected

pattern and its derivative. Hence, invertiblity of the MSL

matrix can be analyzed only in terms of the properties of the

projected pattern, and not the scene.

5. Invertibility of MSL Matrix

We now discuss the requirements for the MSL matrix to

be invertible and well-conditioned. To analyze its invertibil-

ity, we look at its determinant,

∆MSL = (p⊤p)(p⊤

x px)− (p⊤px)
2

= ‖p‖2‖px‖
2(1− cos2(θ)), (7)

where θ is the angle between p and px. Eq. (6) is solvable

if and only if ∆MSL 6= 0. This is ensured by displaying a

pattern that is not uniformly zero (p 6= 0), not a constant,

(px 6= 0), or not any pattern such that θ 6= 0, π. The condi-

tion θ = 0 or π implies p ∝ px, which is only satisfied by

exponential patterns2.

Proposition 5.1 (Necessary and sufficient condition for in-

vertibility). The MSL matrix is invertible iff the projected

pattern is not horizontally constant or an exponential pat-

tern of the form P (x, y) = c1e
c2x.

2See supplementary material for derivation.
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Figure 2: Handing high-frequency texture. Most real scenes

have textured objects. To account for high frequency texture in

scene, the guided MSL approach uses a (b) no-pattern image of

the scene for robust depth recovery. We model the unknown object

texture as a simple linear scaling of the guide image, shown in (c),

which leads to significant improvement in depth estimation, while

maintaining the low decoding complexity.

This proposition states that by projecting a pattern that is

not a constant or an exponential function theoretically guar-

antees that the MSL equation has a solution. Next, we dis-

cuss the stability of the solution, an important consideration

in the presence of noise.

Invertibility with noisy measurements. In order to sta-

bly invert the MSL matrix in the presence of noise, its two

eigen values must be maximized. The two eigen values are,

λ1 = ‖p‖
√

1− cos2(θ),λ2 = ‖px‖
√
1− cos2(θ) , (8)

and are directly proportional to ‖p‖, ‖px‖ and 1− cos2(θ).
Intuitively ‖p‖ is proportional to the projector’s brightness

and ‖px‖ is proportional to local gradients of the pattern.

While simultaneously maximizing both quantities is a com-

plex optimization problem, we observe that the third term,

1− cos2(θ) is maximized when θ = 90◦, which is satisfied

by continuous periodic signals. Therefore, stable solution

to the MSL equation is achieved when the projected pattern

is periodic. The pattern period may not align with analysis

window. However, in practice, as shown in our experiments,

depth estimates are robust to small misalignment.
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6. Handling Texture Edges

The analysis so far assumes that both albedo and dispar-

ity within a small window are constant. While this simpli-

fies the analysis, these assumptions are severely restrictive,

as most real-world scenes consist of textured objects. To

handle such realistic scenes, we propose a simple modifi-

cation to MSL that leverages the no-pattern image captured

for removing the ambient component (Section 4). The no-

pattern image acts as a guide image G(x, y) to further reg-

ularizes MSL decoding, especially in the presence of high-

frequency scene texture, as illustrated in Figure 2. We call

this approach guided MSL.

Guided MSL: Instead of locally smooth albedo, we as-

sume that the albedo is locally a scaled version of the guide

image. Such an assumption holds when the window is small

and the objects are not highly specular. Specifically, we

assume the following relationship between albedo and the

guide image, ρ(xl, ym) ≈ α0G(xl, ym) within the analysis

window. Then, the MSL equation is modified as,

I(xl, ym) = α0P1(xl, ym) + ũ0P2(xl, ym), (9)

where P1(xl, ym) = G(xl, ym)P (xl, ym) and P2 =
G(xl, ym)P ′(xl, ym). The above equation is same as stan-

dard MSL except with different expressions for pattern and

derivative and hence can be solved equally efficiently. This

is similar to guided filtering [10] where the image to be fil-

tered is locally expressed as a linear scaling of the guided

image, plus an offset. To keep computation simple, we as-

sume the albedo is only a scaled version of the guided im-

age. Figure 2 illustrates the advantage of guided MSL over

standard MSL by computing depth of a highly textured ob-

ject. Guided MSL considerably improves the accuracy of

MSL-based depth recovery, with practically no computa-

tional overhead, thus expanding the scope of the proposed

approaches. Henceforth, all our results are computed using

the guided MSL approach.

7. Practical Considerations for MSL

We now discuss several practical design choices for an

MSL system, including designing the projected pattern, and

various system parameters, including the baseline.

7.1. Choice of Projected Pattern

As discussed in Section 5, a periodic pattern guarantees

that the MSL matrix is invertible, albeit under the assump-

tion of locally constant depths (disparity). In this section,

we aim to design patterns that are applicable to a broader

range of scene geometries. Instead of assuming locally con-

stant depths, we model the local geometry in a small win-

dow with locally planar depth variation, which is approxi-

mated well by linear disparity. Can we design patterns that

accurately estimate depth for locally linear disparity?

It can be shown that the solution of MSL equation is un-

biased for locally linear geometry iff |P ′(x,y)| = f(y), i.e.,

the pattern has a constant derivative3. The only such pattern

is the intensity ramp, which is not desirable due to a small

derivative. Instead, we choose a piece-wise linear pattern

within the window, which ensures approximately constant

derivative in the window, and has large magnitude of local

gradients. A periodic symmetric triangle is such a pattern,

which is continuous and has a constant derivative almost ev-

erywhere. All the results shown henceforth in the paper are

with a triangular pattern; comparisons with other patterns

are shown in the supplementary material.

7.2. Choice of System Parameters

Next, we evaluate the effect of various MSL system

parameters (baseline, pattern period and window size) on

depth accuracy. Since capturing real data with a wide range

of parameters is infeasible, we instead evaluate via simu-

lations using several scenes from the Middlebury dataset

[26, 27]. For all our simulations, we chose a system con-

figuration that closely resembled a mobile phone platform.

Specifically, focal length of camera and projector was set

to f = 25mm, and scenes were simulated over a depth

range of 100 − 2000mm. We also added readout and pho-

ton noise to understand the effect of noise on performance

of MSL. Based on these simulations, we provide guidelines

for choosing parameters for achieving high performance,

which we then demonstrate via real experiments.

Window size. The size of window dictates the accuracy

and spatial resolution of estimated depth map. This is sim-

ilar to the effect of window size in block-matching based

stereo techniques. To quantify the effect of window size,

Figure 3 shows a plot of accuracy for varying window size

for a 20px period. Intuitively, a smaller window does not

capture sufficient spatial information, leading to ambiguity

in correspondence estimation. In contrast, a larger window

leads to spatial smoothening, leading to loss in resolution.

As noted in section 5, the appropriate window size is close

to the pattern period, and hence a window size of 20px leads

to highest accuracy across all scenes.

Pattern period. For a fixed baseline, a smaller period ac-

curately captures small depth variations, but limits the depth

range. In contrast, a larger period enables a larger depth

range, but with a lower depth resolution. Specifically, given

a desired depth range dmin and dmax, the disparity range is

given by ∆ = Bf
(

1

dmin
− 1

dmax

)
. To ensure unambiguous

solution and local linear approximation to hold, the period

3See supplementary material for further details.
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